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SUMMARY

Passive energy dissipation (PED) devices have been implemented to enhance structural performance by
reducing seismically induced structural damage.  In this paper metallic dampers are defined to be structural
fuses (SF) when they are designed such that all damage is concentrated on the PED devices, allowing the
primary structure to remain elastic.  Following a damaging earthquake, only the dampers would need to be
replaced, making repair works easier and more expedient.  Furthermore, SF introduce self-centering
capabilities to the structure in that, once the ductile fuse devices have been removed, the elastic structure
would return to its original position.  A comprehensive parametric study is conducted leading to the
formulation of the SF concept, and allowing to identify the possible combinations of key parameters essential
to ensure adequate seismic performance for SF systems.  Nonlinear time history analyses are conducted for
several combinations of parameters, in order to cover the range of feasible designs.  The effects of earthquake
duration and strain-hardening on response of short and long period systems are also considered as part of this
process.

INTRODUCTION

Typically, in seismic design, the loads resulting from an earthquake are reduced by a response modification
factor, R, which allows the structure to undergo inelastic deformations, while most of the energy is dissipated
through hysteretic behavior.  Designs have always (implicitly or explicitly) relied on this reduction in the
design forces.  However, this methodology relies on the ability of the structural elements to accommodate
inelastic deformations, without compromising the stability of the structure.  Furthermore, inelastic behavior
translates into some level of damage on these elements.  This damage leads to permanent system deformations
following an earthquake, leading to high cost for repair works, in the cases when repairs are possible.  In fact,
it is frequently the case following earthquakes, that damage is so large that repairs are not viable, even though
the structure has not collapsed, and the building must be demolished.
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To achieve stringent seismic performance objective for buildings, an alternative design approach is desirable.
In that perspective, it would be attractive to concentrate damage on disposable and easy to repair structural
elements (i.e., “structural fuses”), while the main structure would be designed to remain elastic or with minor
inelastic deformations.  Following a damaging earthquake, only the dampers would need to be replaced
(hence the “fuse” analogy), making repair works easier and more expedient, without the need to shore the
building in the process.  Furthermore, in that instance, self-recentering capabilities of the structure would be
possible in that, once the ductile fuse devices are removed, the elastic structure returns to its original position.

In this paper, the structural fuses are passive energy dissipation (PED) devices, (a.k.a. metallic dampers)
designed such that all damage is concentrated on the PED devices.  The structural fuse concept is described
in this study in a parametric formulation, considering the behavior of nonlinear single degree of freedom
(SDOF) systems subjected to synthetic ground motions.  Nonlinear dynamic response is presented in
dimensionless charts normalized with respect to key parameters.  Allowable story drift is introduced as an
upper bound limit to the charts, which produces ranges of admissible solutions, shown as shaded areas in the
graphs.  Earthquake duration and strain-hardening ratio effects are also analyzed.

ANALYTICAL MODEL OF A SDOF SYSTEM WITH STRUCTURAL FUSES

Figure 1 depicts a single-story one-bay structure subjected to ground motion, whose frame, device support
system, and metallic damper are modeled as a lumped mass connected to the ground by elasto-plastic springs,
and the inherent system viscous damping action is represented by a linear dashpot (Figure 1b).  The three-
spring model can be simplified, as well, to an equivalent one-spring model (Figure 1c) with lateral stiffness,
K1, equal to:

where Kf  and Ka are the lateral stiffness of the frame, and added damping system, respectively.  The damping
system consists of the device support system and damper itself, whose equivalent added stiffness, Ka,
becomes:

where Ks and Kd are the lateral stiffness of the device support system (which may be optional, depending on
whether the device requires to be attached to a support system), and the damper, respectively.  It is
worthwhile to mention that for device support system much stiffer than dampers, the deformation of the
device support system could be ignored, without significant loss of accuracy, and Equation (1) simplifies to:
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Figure 1.  Model of a SDOF system with structural fuse; ( a ) One-bay single-story
structure, ( b ) Equivalent three-spring system, ( c ) Equivalent one-spring system
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Accordingly, the increased stiffness caused by the inclusion of metallic dampers reduces the period of the
primary structure (bare frame), changing it from:

to:

The structural fuse concept requires that yield deformation of the damping system, ∆ya, be less than the yield
deformation corresponding to the bare frame, ∆yf.  Considering the deformation of the device support system,
the yield deformation of the added damping system is equal to:

where ∆yd is the damper yield deformation.  Figure 2 shows a general pushover curve for a SDOF system with
two elasto-plastic springs in parallel.  The total curve is tri-linear with the initial stiffness, K1, calculated using
Equations (1) and (2).  Once the damping system reaches its yield deformation, ∆ya, the increment on the
lateral force is resisted only by the bare frame, being the second slope of the total curve equal to the frame
stiffness, Kf.  Two important parameters used in this study are obtained from Figure 2: the strain-hardening
ratio, α, and the maximum displacement ductility, µmax.
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The strain-hardening ratio, α, is the relationship between the frame stiffness and the total initial stiffness,
which can be calculated as:

with α being a dimensionless parameter less than one.

The maximum displacement ductility, µmax, is the ratio of the frame yield displacement, ∆yf, with respect to
the yield displacement of the damping system, ∆ya.  In other words, µmax is the maximum displacement
ductility that the structure experiences before the frame undergoes inelastic deformations.  This parameter
can be written as:

with µmax being greater than one.  In Figure 2, Vyf and Vyd are the base shear capacity of the bare frame and
the damping system, respectively; and Vy and Vp are the total system yield strength and base shear capacity,
respectively.

Pushover curves for different values of α and µmax are presented in Figure 3, with horizontal and vertical axes
respectively normalized with respect to the yield displacement of the frame, ∆yf, and the system total base
shear capacity, Vp, as shown in Figure 2.  As a result, Figure 3 also shows the damping system and frame
capacities as percentages of the total base shear capacity.
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Figure 3. Pushover Curves for the Studied Systems, Normalized by Vp, ∆yf
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PARAMETRIC FORMULATION

In linear dynamic analysis of SDOF systems, the equation of motion is commonly written as:

where m, c, k, are the mass, damping coefficient, and linear spring stiffness of the system, respectively, and
üg(t) is the ground acceleration.  Solving Equation (9) gives the system response, expressed in terms of the
relative displacement, , relative velocity, , and relative acceleration, .

For a nonlinear SDOF with hysteretic behavior, once the yield point is exceeded, the spring force is no longer
proportional to the relative displacement.  Mahin and Lin [1] proposed a normalized version of the nonlinear
dynamic equation of motion adapted as shown below.  Considering the force in the inelastic spring as time-
dependent, R(t), and substituting R(t) for ku(t) into Equation (9), gives:

Introducing the natural circular frequency, , and damping ratio, , Equation (10) can

be written as:

Equation (11) can be transformed to express the system response in terms of displacement ductility,  µ(t), of
the added damping system, which is defined as:

where ∆ya is the yield displacement of the damping system, calculated using Equation (6).
Differentiating Equation (12) with respect to time, yields:

and:

Substituting Equations (12), (13), and (14) into (11) gives the normalized equation of motion used in this
study:

where T is the elastic period of the structure, defined by Equation (5), and ρ(t) is the ratio between the force
in the inelastic spring and the yield strength of the system, calculated as:
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and η is the strength-ratio determined as the relationship between the yield strength and the maximum ground
force applied during the motion, defined as:

where ügmax is the peak ground acceleration.

For a specific ground motion, üg(t), Equation (15) can be solved in terms of the above parameters, assuming
a damping ratio, ξ, of 0.05 in this study.  Note that the impact of the strain-hardening ratio, α, (Equation (7))
on inelastic response is accounted for by the term defined in Equation (16).

NONLINEAR DYNAMIC RESPONSE

A design response spectrum was constructed based on the National Earthquake Hazard Reduction Program
Recommended Provisions (NEHRP 2000 [2]) for Sherman Oaks, California, and site soil-type class B.  This
site was chosen because it corresponds to the location of the Demonstration Hospital used by the
Multidisciplinary Center for Earthquake Engineering Research (MCEER) in some of its projects.
Accordingly, the design spectral accelerations for this site are SDS = 1.3 g, and SD1 = 0.58 g.  Using the Target
Acceleration Spectra Compatible Time Histories (TARSCTHS) code, by Papageorgiou et al. [3], three
spectra-compatible synthetic ground motions were generated to match the NEHRP 2000 target design
spectrum.  All synthetic strong motion records generated were 15 seconds in duration.  The effect of longer
duration records is further investigated using synthetic ground motion of 60 seconds in duration.

Nonlinear time history analyses were conducted using the Structural Analysis Program, SAP 2000,
(Computers and Structures, Inc. [4]).  Analyses were performed for the range of systems described in
Figure 3, using the following parameters: α = 0.05, 0.25, 0.50; µmax = 10, 5, 2.5, 1.67; η = 0.2, 0.4, 0.6, 1.0;
and T = 0.1 s, 0.25 s, 0.50 s, 1.0 s.  The combination of these parameters resulted in 192 analyses for each
ground motion generated (i.e., a total of 768 nonlinear time history analyses).

The response of the system is expressed in terms of the frame ductility, µf, and the global ductility, µ, defined
as follows:

where umax is the maximum absolute displacement of the system, taken as the average of the maximum
absolute responses caused by each of the applied ground motion.  

Figure 4 shows the matrix of results corresponding to the 768 nonlinear analyses conducted in terms of
average frame ductility, µf, as a function of the elastic period, T.  Every plot corresponds to a fixed set of α
and µmax values, while each curve represents a constant strength-ratio, η.  All the points having µf < 1 in
Figure 4 represent elastic behavior of the frame (which is the objective of the structural fuse concept).
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Figure 4.  Regions of Admissible Solutions in terms of Frame Ductility (µf), and
Story Drift of 2%
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Figure 4 also shows the regions of acceptable solutions that satisfy the structural fuse concept defined by the
following boundaries:
• Maximum ductility:  To keep the primary structure elastic, the frame ductility shall be less or equal to one

(i.e., µf # 1.0).  Accordingly, the global ductility shall be less than the maximum displacement ductility
(i.e., µ # µmax).

• Allowable drift limit (umax / H # ∆a):  To maintain the lateral displacement under a tolerable level, story
drift shall be kept less than the selected limit, ∆a, as a function of the story height, H.  A drift limit of 2%
of the story height has been used, which corresponds to a period of 0.53 s (shown as the dashed line).

Note that for large strength-ratio and period values (i.e., η $ 0.6 and T $ 1.0 s) the structure tends to behave
elastically, which means that metallic dampers only provide additional stiffness with no energy dissipation.
Elastic behavior of the metallic dampers contradicts the objective of using PED devices, other than the benefit
of reducing the lateral displacements to below certain limits (something that could be done just as well with
conventional structural elements).

Also, a study on the effects of earthquake duration on the above results for SDOF systems, using 15 s and
60 s long synthetic accelerograms revealed slight differences in the above results.  A maximum difference
of 20% was obtained in some cases for the average ductility values, variations are not significant considering
the random characteristics of earthquake excitations.  However, even though earthquake duration does not
appreciably affect the maximum ductility response, it does increase the number of hysteresis cycles developed
during the motion, causing an important increase in the amount of energy dissipated.  In some circumstances,
this larger number of inelastic cycles could have an impact on the fatigue life of the structural fuses, but this
is unlikely for well designed ductile devices, and consideration of this effect is beyond the scope of this study.

CONCLUSIONS

The structural fuse concept has been introduced in this paper and validated through a parametric study of the
seismic response of SDOF systems.  It has been found that the range of admissible solutions that satisfy the
structural fuse concept can be parametrically defined, including (as an option) the story drift limit expressed
as an elastic period limit.  As shown in Figure 4, as a design tool, this can be represented graphically with
shaded areas delimiting the range of admissible solutions.  Systems having µmax $ 5 offer a broader choice
of acceptable designs over a greater range of η values.  Even though ductility demand, µf and µ, does not vary
significantly with α (except for small values, i.e., α = 0.05), the hysteretic energy substantially increases with
decreases in α values.  In other words, substantially different amount of hysteretic energy can be dissipated
by system having identical ductility demands.
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